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Abstract

This paper considers a variety of problems in the design of selective RF-pulses. We apply a formula of Zakharov and Manakov

to directly relate the energy of an RF-envelope to the magnetization profile and certain auxiliary parameters used in the inverse

scattering transform (IST) approach to RF-pulse synthesis. This allows a determination of the minimum possible energy for a given

magnetization profile. We give an algorithm to construct both the minimum energy RF-envelope as well as any other envelope that

produces a given magnetization profile. This includes an algorithm for solving the Gel�fand–Levitan–Marchenko equations with

bound states. The SLR method is analyzed in terms of traditional scattering data, and shown to be a special (singular) case of the

IST approach. RF-envelopes are computed for a variety of examples.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The synthesis or design of RF-pulse sequences to

produce selective excitations is a problem of central

importance in all applications of nuclear magnetic res-

onance. The oldest systematic method of pulse synthesis

is the Fourier transform method. Notwithstanding the

fact that this method is an approximation for all non-

zero flip angles, it gives usable results for flip angles up

to about p=2. Over the past 20 years, more exact and
systematic approaches to solving this problem have been

introduced and explored. The Shinnar–Le Roux or SLR

algorithm was discovered independently by Shinnar

et al. and Le Roux. See for example [20,21] or [10]. A

more complete list of the original papers can be found in

the references to [14]. A second method is to use an in-

verse scattering transform or IST. There are, in fact, two

different IST approaches to pulse design. An earlier
method employing a reduction of the Bloch equation to

a scalar Schr€odinger equation appears, for example in
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[8,9,23–25]. Later it was realized that the IST for the

spin-domain Bloch equation could be used directly, see
[4,5,17]. In a sense, made precise in Section 8, the SLR

is, in part, a special case of the inverse scattering

transform for the spin-domain Bloch equation. A thor-

ough discussion of methods used to design RF-pulses,

prior to the introduction of the SLR and the IST, can be

found in [26].

In this paper, we present several clarifications, ex-

tensions, and improvements in the application of the
spin-domain Bloch equation inverse scattering trans-

form as a tool for RF-pulse design. Before describing

our results we briefly consider the older, Schr€odinger
approach. The idea is to reduce the Bloch equation to a

scalar Schr€odinger equation of the form

o2uH þ VH ¼ 0: ð1Þ
Here HðuÞ and V ðuÞ are complex valued functions. This

reduction is accomplished by changes in both the de-

pendent and independent variables. This approach led

to several important advances, notably the so-called

sech-pulses, see [23]. There are two basic reasons why it

does not provide a good general framework for pulse

design: (1) The change of variables, used to go from the
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Bloch equation to Eq. (1), is singular. (2) The inverse
problem for the Schr€odinger equation is not generally

solvable for the sort of data that arise in RF-pulse

synthesis. In particular this IST is poorly behaved if the

potential, V , is complex valued. On the other hand, the

transformation between the standard Bloch equation,

and the spin-domain Bloch equation is smooth and in-

vertible. The IST for the spin-domain equation is very

well behaved for the data that arises in practical pulse
synthesis problems. In this paper, we make no further

mention of the Schr€odinger approach to inverse scat-

tering and pulse design.

The basic input to a pulse design problem is an ideal

magnetization profile, m1
i ðmÞ. This is a unit 3-vector-

valued function of the offset frequency, m, which de-

scribes the state of the magnetization at the conclusion

of the RF-pulse and possible rephasing. Typically, one
would like to flip the spins through a specified angle, u,
for offset frequencies lying in a certain range ½m0; m1�, and
leave the spins in their equilibrium state for frequencies

outside this interval. In principle, this is possible, and

the pulse required to do it has finite energy. However,

the instantaneous transition (in frequency space) would

require an infinite amount of time to achieve. Hence, the

first step in practical pulse design is the approximation
of m1

i ðmÞ by a ‘‘design’’ magnetization profile, m1
d ðmÞ,

which can be (approximately) realized by a pulse of fi-

nite duration. In the SLR approach, m1
i ðmÞ is approxi-

mated by functions of a very specific form. This allows

the construction of a pulse of a given duration. How-

ever, in return for fixing the duration of the pulse, one

must give up directly specifying the phase of the trans-

verse magnetization of m1
d ðmÞ. Instead the phase is

‘‘recovered.’’ In the IST approach one directly approx-

imates m1
i ðmÞ, but the duration of the pulse is not

specified in advance. Strictly speaking, the pulses pro-

duced by the IST method have infinite duration. In

practice this is not a problem, for if m1
d ðmÞ is reasonably

smooth, then the pulse decays very rapidly. A short part

of the pulse already produces a good approximation to

m1
d ðmÞ.
The design magnetization profile does not uniquely

specify the pulse. Indeed, it is clear from inverse scat-

tering theory that there is an infinite dimensional space of

RF-envelopes that will produce any reasonable magne-

tization profile. The ‘‘auxiliary’’ data is specified by

finite collections of pairs of complex numbers,

fðn1;C1Þ; . . . ; ðnN ;CN Þg, with Imnj > 0 and Cj 6¼ 0.

These are referred to as bound states. For any choice of
N P 0, and bound states, there is a unique RF-envelope

that produces the magnetization profile m1
d ðmÞ. The re-

maining problem of pulse synthesis is therefore to

choose bound states to obtain an ‘‘optimal’’ RF-enve-

lope, producing a given magnetization profile. In this

paper, we show how to use the IST approach to design

RF-envelopes that utilize the minimum possible energy.
At the center of this discussion is a formula expressing
the energy in the RF-envelope explicitly in terms of the

magnetization profile and the bound states. Formulæ of

this type were discovered, in the context of inverse

scattering for the Korteweg de Vries equation, by Za-

kharov and Faddeev [27]. The formula we use appears in

a 1974 paper of Zakharov and Manakov [28]. A related,

though less explicit formula, appears in [14]. This for-

mula does not include contributions from the bound
states. The formula we give is useful both for the design

of pulse sequences, as well as for their analysis, as it

allows for an a posteriori determination of the energy

efficiency of a preexisting pulse sequence. It corrects the

often repeated error in the MR-literature that the energy

of a selective pulse is proportional to the square of the

flip angle. In fact, the minimum energy required to flip

spins in a band of width B, through an angle u is pro-
portional to B logð2=1þ cosuÞ. After this paper was

completed it was brought to our attention that the for-

mula for the energy appears in a paper of Rourke and

Saunders [18].

Energy is just one among several important charac-

teristics of a selective RF-pulse. Duration, maximum

amplitude, stability, and rephasing time are also im-

portant parameters. While the minimum energy pulse
may not be the best pulse for every application, it rep-

resents a good starting point when attempting to find

that ‘‘best pulse.’’ The other pulses producing a given

magnetization profile have bound states. We give an

extension of an algorithm, presented in [17], which al-

lows for the specification of an essentially arbitrary

collection of bound states. The formula for the energy

shows that, for a given magnetization profile, a potential
with bound states always requires more energy. It also is

known, from the work of Morris and Rourke that, by

adding bound states one can obtain truly self refocused

pulses. But generally, the effects of bound states on the

RF-envelope remain quite mysterious. Two very tanta-

lizing questions are: (1) Can the duration of a pulse be

reduced by adding bound states? See [7]. Can the sen-

sitivity of a pulse to amplitude, or phase errors be re-
duced by adding bound states? Beyond these specific

questions, it is clear that a large part of the flexibility in

the design of RF-pulses resides in the selection of the

bound states. Our algorithm opens up the possibility of

systematically exploring their effects.

We close this introduction with a brief summary of

the sections which follow. In Section 2 we recall the

connection between the Bloch equation without relaxa-
tion, and its spin-domain formulation. Following the

mathematics literature, we call this the ZS-system. We

next review the scattering theory for the ZS-system, and

relate the scattering data to the magnetization profile.

These sections closely follow [1,14,17]. In Section 4 we

state the formula relating the energy in the RF-envelope

to the magnetization profile, and the location of the
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bound states. In Section 5 we outline the inverse scat-
tering transform for the ZS-equation. We use the Gel�-
fand–Levitan–Marchenko equation, or more briefly the

Marchenko equation, following the treatment in [1]. In

order to fix notation, and to have a complete and con-

sistent foundation for further work in this field, these

sections review some well known facts. In the Sections 6

and 7 we discuss the problem of implementing the IST,

and give an algorithm for solving the Marchenko
equation, with arbitrarily selected bound states. In

Section 8 we compare the SLR and IST approaches.

Section 9 contains a variety of examples. Proofs of

several mathematical results are contained in an Ap-

pendix A.
2. The spin-domain Bloch equation and the problem of
RF-pulse synthesis

The Bloch equation without relaxation is usually

written in the form

dM

dt
¼ cM � B: ð2Þ

Here M is the magnetization, B is the applied magnetic
field, t is time and c is the gyromagnetic ratio. A vector

evolves with constant length under this equation. Initial

data is usually specified at t ¼ 0; the solution to the

Bloch equation is linear in the initial data. Throughout

this paper we assume that solutions of the Bloch equa-

tion are normalized to have length equal to one.

The Bloch equation is usually analyzed in a ‘‘rotating

reference’’ frame. Ordinarily the rotating reference
frame is related to the ‘‘laboratory frame’’ by a time

dependent orthogonal transformation of the form

FðtÞ ¼
cos hðtÞ � sin hðtÞ 0

sin hðtÞ cos hðtÞ 0

0 0 1

24 35; ð3Þ

so that

MðtÞ ¼ FðtÞmðtÞ: ð4Þ
We use m to denote the magnetization in the rotating

reference frame. Larmor�s theorem implies that if M
satisfies (2) then m satisfies

dm

dt
¼ cm� Beff ; ð5Þ

where

BeffðtÞ ¼ F�1ðtÞBðtÞ þ 1

c
XðtÞ with XðtÞ ¼ ½0; 0; h0ðtÞ�y:

ð6Þ
Notational remark: Most of the vectors used in this

paper are to be thought of a column vectors. The no-

tation ½a; b; c�y refers to the transpose of the row vector,

which is therefore a column vector, i.e.
½a; b; c�y ¼
a
b
c

24 35: ð7Þ

In most applications of this method, the function hðtÞ
is selected to render the z-component of Beff indepen-

dent of time. Usually hðtÞ ¼ �x0t, and

Beffðm; tÞ ¼ x1ðtÞ;x2ðtÞ; c�1m
� �

: ð8Þ

The constant value m is called the offset frequency or
resonance offset. If Beff is given by (8), then, in the lab-

oratory frame, the RF-envelope is given by

B1ðtÞ ¼ Re eihðtÞðx1ðtÞ þ ix2ðtÞÞ;
�
Im eihðtÞðx1ðtÞ þ ix2ðtÞÞ; 0

�y
: ð9Þ

The energy in the RF-envelope is given by

Ep ¼
Z 1

�1
jB1ðtÞj2 dt ¼

Z 1

�1
jx1ðtÞ þ ix2ðtÞj2 dt: ð10Þ

A magnetization profile is a unit vector valued func-

tion defined for m 2 R

m1ðmÞ ¼
m1

1 ðmÞ
m1

2 ðmÞ
m1

3 ðmÞ

24 35: ð11Þ

In essentially all MR applications, m1ðmÞ ¼ ½0; 0; 1�y, for
m outside of a bounded interval. The problem of RF-

pulse synthesis is to find a time dependent complex pulse
envelope, x1ðtÞ þ ix2ðtÞ, so that, if BeffðmÞ is given by (8),

then the solution of

dm

dt
ðm; tÞ ¼ cmðm; tÞ � Beffðm; tÞ; ð12Þ

with

lim
t!�1

mðm; tÞ ¼ ½0; 0; 1�y; ð13Þ

satisfies

lim
t!1

e�imtðm1

�
þ im2Þðm; tÞ;m3ðm; tÞ

�
¼ m1

1

��
þ im1

2

�
ðmÞ;m1

3 ðmÞ
�
: ð14Þ

We have used the standard complex notation, m1 þ im2,

for the transverse components of the magnetization. If

x1ðtÞ þ ix2ðtÞ is supported in the interval ½t0; t1�, then

these asymptotic conditions are replaced by

mðm;t0Þ¼½0;0;1�y;
e�imt1ðm1

�
þim2Þðm;t1Þ;m3ðm;t1Þ

�
¼ m1

1

��
þim1

2

�
ðmÞ;m1

3 ðmÞ
�
:

ð15Þ

The mapping from x1ðtÞ þ ix2ðtÞ to m1 (as defined in
Eqs. (12)–(14)) is highly nonlinear; the problem of pulse

synthesis is that of inverting this mapping.

To solve the problem of RF-pulse synthesis, it is

convenient to introduce the spin domain formulation of

the Bloch equation. Instead of a unit vector m in R3, we
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solve for a unit vector w in C2. This vector satisfies the
2� 2 matrix equation

dw

dt
¼ � i

2
x � rw: ð16Þ

Here x ¼ �½cx1ðtÞ; cx2ðtÞ; m�, and r are the Pauli spin

matrices:

r1 ¼
0 1

1 0

� �
; r2 ¼

0 �i

i 0

� �
; r3 ¼

1 0

0 �1

� �
:

ð17Þ
Assembling the pieces we see that w satisfies2

dw

dt
ðn; tÞ ¼ �in qðtÞ

�q�ðtÞ in

� �
wðn; tÞ; ð18Þ

with

n ¼ m
2
; qðtÞ ¼ �ic

2
ðx1ðtÞ � ix2ðtÞÞ: ð19Þ

A simple recipe takes a solution of (18) and produces

a solution of (12). If wðn; tÞ ¼ ½w1ðn; tÞ;w2ðn; tÞ�
y satisfies

(18) then the 3-vector

mðm; tÞ ¼ 2Re ðw�
1w2Þ; 2Im ðw�

1w2Þ;
h
jw1j

2 � jw2j
2
iy m

2
; t

� �
; ð20Þ

satisfies (12). If in addition

lim
t!�1

eintwðn; tÞ ¼ 1

0

� �
; ð21Þ

then m satisfies (13). Thus the RF-pulse synthesis

problem is easily translated into a inverse scattering

problem for Eq. (18). This is described in the next sec-

tion. Following the standard practice in inverse scat-
tering we refer to Eq. (18) as the ZS-system and q as the

potential. Our presentation of the spin domain Bloch

equation is largely taken from [17]. The only difference

in our normalization is that we have not rescaled the

time variable; for comparisons, set T ¼ 1 in [17].
3. Scattering theory for the ZS-system

Scattering theory for an equation like (18) relates the

behavior of wðn; tÞ, as t ! �1 to that of wðn; tÞ, as

t ! þ1. If q has bounded support, then the functions

e�int

0

� �
;

0

eint

� �
; ð22Þ

are a basis of solutions for (18) outside the support of q.
If the L1-norm of q is finite, then, it is shown in [1], that

(18) has solutions that are asymptotic to these solutions

as t ! �1.
2 We follow the standard practice in the MR literature of using z�

to denote the complex conjugate of the complex number z.
Theorem 1. If kqkL1 is finite, then, for every real n, there
are unique solutions

w1þðnÞ;w2þðnÞ and w1�ðnÞ;w2�ðnÞ; ð23Þ
to Eq. (18), which satisfy:

lim
t!�1

eintw1�ðn; tÞ ¼
1

0

� �
; lim

t!�1
e�intw2�ðn; tÞ ¼

0

�1

� �
;

ð24Þ

lim
t!1

eintw1þðn; tÞ ¼
1

0

� �
; lim

t!1
e�intw2þðn; tÞ ¼

0

1

� �
:

ð25Þ
The solutions w1�ðnÞ;w2þðnÞ extend as analytic functions
of n to the upper half plane, fn : Imn > 0g, and
w2�ðnÞ;w1þðnÞ extend as analytic functions of n to the
lower half plane, fn : Imn < 0g.

The proof of this theorem can be found in [1].
For real values of n, the solutions normalized at �1

can be expressed in terms of the solutions normalized at

þ1 by linear relations:

w1�ðn; tÞ ¼ aðnÞw1þðn; tÞ þ bðnÞw2þðn; tÞ;
w2�ðn; tÞ ¼ b�ðnÞw1þðn; tÞ � a�ðnÞw2þðn; tÞ:

ð26Þ

The functions a; b are called the scattering coefficients
for the potential q. The 2� 2-matrices ½w1�w2��; ½w1þw2þ�
satisfy

½w1�w2�� ¼ ½w1þw2þ�
aðnÞ b�ðnÞ
bðnÞ �a�ðnÞ

� �
: ð27Þ

The scattering matrix for the potential q is defined to be

sðnÞ ¼ aðnÞ b�ðnÞ
bðnÞ �a�ðnÞ

� �
: ð28Þ

Recall that the Wronskian between two C2-valued

functions of t is defined by

W ðuðtÞ; vðtÞÞ¼d u1ðtÞv2ðtÞ � u2ðtÞv1ðtÞ: ð29Þ
If uðtÞ and vðtÞ are solutions of (18), for the same value

of n, then W ðuðtÞ; vðtÞÞ is independent of t. In this case

we denote the Wronskian by W ðu; vÞ. It is not difficult to

show that

aðnÞ ¼ ½w11�ðn; tÞw22þðn; tÞ � w21�ðn; tÞw12þðn; tÞ�
¼ W ðw1�;w2þÞðnÞ: ð30Þ

It follows from Theorem 1 and (30) that a extends to the

upper half plane as an analytic function.

If q has an integrable derivative, then (30) implies that

aðnÞ ¼ 1þ 1

2in

Z 1

�1
jqðsÞj2 dsþO

1

n2

	 

; ð31Þ

as jnj tends to infinity in ImnP 0. As W ðw1�;w2�Þ ¼ �1

it follows that:

jaðnÞj2 þ jbðnÞj2 ¼ 1; ð32Þ
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and therefore (31) implies that

jbðnÞj ¼ O
1

jnj

	 

as n ! �1: ð33Þ

These results are proved in [1].

Assuming that tjqðtÞ is integrable for all j it is shown
in [1] that a has finitely many zeros in ImnP 0. The
Wronskian, W ðw1�;w2þÞðnÞ vanishes if and only if the

functions w1� and w2þ are linearly dependent. Let

fn1; . . . ; nNg be a list of the zeros of a. Formula (30)

implies that for each j there is a nonzero complex

number C0
j so that

w1�ðnjÞ ¼ C0
jw2þðnjÞ; j ¼ 1; . . . ;N : ð34Þ

Eq. (18) can be rewritten in the form

iot �iq
�iq� �iot

� �
w1

w2

� �
¼ n

w1

w2

� �
: ð35Þ

From this formulation it is clear that n should be re-

garded as a spectral parameter. If n has positive imagi-
nary part, then w1�ðn; tÞ decays exponentially as t tends
to �1 and w2þðn; tÞ decays exponentially as t tends to

þ1. Hence (34) implies that w1�ðnj; tÞ decays expo-

nentially at both �1 and therefore the function

w1�ðnj; tÞ belongs to L2ðR;C2Þ. Thus the operator on the

left-hand side of (35) has L2-bound states for these values
of the offset frequency.

We generally assume that the zeros of a are simple
and that their imaginary parts are positive. This is

mostly to simplify the exposition, there is no diffi-

culty, in principle, if a has real zeros or higher order

zeros.

Definition 1. The pair of functions ðaðnÞ; bðnÞÞ, for

n 2 R, and the collection of pairs fðnj;C0
jÞ : j ¼ 1; . . . ;

Ng define the scattering data for Eq. (18).

The scattering data are not independent. If

fnj : j ¼ 1; . . . ;Ng are the zeros of aðnÞ in the upper half
plane, then

~aðnÞ ¼
YN
j¼1

n� n�j
n� nj

	 

aðnÞ; ð36Þ

is an analytic function without zeros in the upper half

plane. Moreover jaðnÞj ¼ j~aðnÞj on the real axis. The

function log ~a is also analytic in the upper half plane,

and the asymptotic formula (31) implies that j log ~aðnÞj is
Oðjnj�1Þ as jnj tends to infinity. The Cauchy integral

formula therefore applies to give a representation of

log ~a in Imn > 0

log ~aðnÞ ¼ 1

2pi

Z 1

�1

logðjaðfÞj2Þdf
f� n

: ð37Þ

Exponentiating, and putting the zeros of a back in

gives
aðnÞ ¼
YN
j¼1

n� nj
n� n�j

 !
exp

1

2pi

Z 1

�1

logðjaðfÞj2Þdf
f� n

" #
;

ð38Þ
see [6]. The reflection coefficient is defined by

rðnÞ ¼ bðnÞ
aðnÞ : ð39Þ

A priori the reflection coefficient is only defined on the

real axis. Using (32) we rewrite (38) in terms of r

aðnÞ ¼
Yn
j¼1

n� nj
n� n�j

 !
exp

i

2p

Z 1

�1

logð1þ jrðfÞj2Þdf
f� n

" #
:

ð40Þ

Both (38) and (40) have well defined limits as n ap-

proaches the real axis.

If a has simple zeros at the points fn1; . . . ; nNg (so

that a0ðnjÞ 6¼ 0), then we define the norming constants by
setting

Cj ¼
C0

j

a0ðnjÞ
; ð41Þ

where the fC0
jg are defined in (34). The definition needs

to be modified if a has nonsimple zeros. The reason for

replacing fC0
jg with fCjg will become more apparent in

Section 5. The pairs fðnj;CjÞg are often referred to as the

discrete data.

Definition 2. The function rðnÞ, for n 2 R, and the col-

lection of pairs fðnj;CjÞ : j ¼ 1; . . . ;Ng define the re-
duced scattering data for Eq. (18).

Implicitly the reduced scattering data is a function of

the potential q. In inverse scattering theory, the data

frðnÞ for n 2 R; ðn1;C1Þ; . . . ; ðnN;CN Þg are specified,
and we seek a potential q that has this reduced scattering

data. The map from the reduced scattering data to q is

often called the Inverse Scattering Transform or IST.

Remark 1. In some of the mathematical and MR liter-

ature there is confusion about the relationship between

possible poles of r in the upper half plane and the lo-

cations of bound states. It is important to realize that a
priori there is no connection between poles of r in the

upper half plane and the bound states. This is illustrated

in example 3.

We now rephrase the RF-pulse synthesis problem as

an inverse scattering problem. Recall that the data for

the pulse synthesis problem is the magnetization profile

m1, which we now think of as a function of n ¼ m=2.
Using (20), the solution w1� to the ZS-system defines a

solution m1� to (12), satisfying (13). It follows from (25)

and (26) that
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w1�ðn; tÞ �
aðnÞe�int

bðnÞeint
� �

; as t ! þ1: ð42Þ

Therefore

m1�ðn; tÞ �
2bðnÞa�ðnÞe2int
jaðnÞj2 � jbðnÞj2
� �

; as t ! þ1: ð43Þ

As before, we use the complex notation for the trans-

verse components of m1�. If m1� also satisfies (14), then

it follows from (43) and (32) that:

rðnÞ ¼ bðnÞ
aðnÞ ¼ lim

t!1

ðm11� þ im21�Þðn; tÞe�2int

1þ m31�ðn; tÞ

¼ ðm1
1 þ im1

2 ÞðnÞ
1þ m1

3 ðnÞ
: ð44Þ

If q has support in the ray ð�1; t1� then

rðnÞ ¼ ðm11� þ im21�Þðn; tÞe�2int

1þ m31�ðn; tÞ
; ð45Þ

is independent of t for tP t1. It is also useful to ob-

serve that if rðnÞ is the reflection coefficient, deter-

mined by the potential qðtÞ, then e�2isnrðnÞ is the
reflection coefficient determined by the time shifted

potential qsðtÞ ¼ qðt � sÞ.
As m1ðnÞ is a unit vector valued function, we see that

the reflection coefficient rðnÞ uniquely determines m1ðnÞ
and vice-versa. Thus the RF-pulse synthesis problem

can be rephrased as the following inverse scattering

problem: Find a potential qðtÞ for the ZS-system so that

the reflection coefficient rðnÞ satisfies (44) for all real n.
Note that the pulse synthesis problem makes no refer-

ence to the data connected with the bound states, i.e.,

fðnj;CjÞg. Indeed these are free parameters in the RF-

pulse synthesis problem, making the problem highly

underdetermined. A basic result of this paper is that, for

a given magnetization profile, the RF-envelope requir-

ing the minimum energy is the one for which the ZS-

system has no bound states.

Remark 2. It is useful to consider the physical sig-

nificance of the t-parameter that appears in (16), and

its connection to the problem of rephasing. The

main clue comes from (45). Suppose that qðtÞ is a

potential supported in ½t0; t1� with reflection coeffi-

cient r. After time t1, a solution to (16) is freely

precessing in the local (gradient offset) B0-field. If
t1 ¼ 0, then, at the end of the RF-excitation, the

magnetization satisfies

ðm11� þ im21�Þðn; 0Þ
1þ m31�ðn; 0Þ

¼ rðnÞ: ð46Þ

We have therefore achieved the desired magnetization

profile, without any need for rephasing. Pulses sup-

ported in ð�1; 0� are therefore self refocused. If on the
other hand t1 < 0, then, at the end of the excitation, the

magnetization satisfies
ðm11� þ im21�Þðn; t1Þ
1þ m31�ðn; t1Þ

¼ e2int1rðnÞ: ð47Þ

In order to get the desired magnetization profile, the

spins must freely precess for jt1j-units of time. Finally if

t1 > 0 (as it normally is), then the spins must precess for

�t1-units of time. In order to achieve the magnetization

profile specified by r, either a 180�-refocusing pulse must

be applied, or the gradient needs to be reversed, fol-

lowed by t1-units of free precession. For pulses designed
using the magnetization profile itself, it is natural to call
t1 the rephasing time. However, in many instances, e.g.,

in SLR, pulses are not designed using the magnetization

profile, (or reflection coefficient), but rather, by using the

flip angle.

The flip angle profile, uðnÞ, is related to the scattering

data by

uðnÞ ¼ sin�1 2jrðnÞj
1þ jrðnÞj2

 !
¼ 2 sin�1ðjbðnÞjÞ: ð48Þ

SLR pulses are usually designed using the flip angle

profile and, the phase of the reflection coefficient is de-

termined indirectly. It is said that the phase is ‘‘recov-

ered.’’ In this context the reflection coefficient

determined by the pulse envelope is an approximation to

a function of the form ei/ðnÞrðnÞ, where rðnÞ is the ‘‘ideal’’
reflection coefficient. If /ðnÞ is approximately linear over

the support of rðnÞ, then the magnetization can be ap-

proximately rephased. In this case, the actual rephasing

time comes in part from t1, as before, and in part from

the phase factor, ei/ðnÞ. We return to this point in our

discussion of SLR pulse design in Section 8.

Another context where the phase of rðnÞ is not

specified in advance is in ‘‘minimum phase’’ pulse de-
sign. To illustrate this point we consider the example of

a 90�, ‘‘minimum phase,’’ minimum energy IST pulse.

For this pulse, rsðnÞ is a smooth approximation to the

characteristic function of an interval. The pulse is de-

signed using a reflection coefficient of the form

rdðnÞ ¼ rsðnÞ
YN
j¼1

n� nj
n� n�j

 !
: ð49Þ

The Blaschke product in (49) has modulus one on the

real axis. The complex numbers fnjg are selected so

that the resultant pulse has support in ð�1; 0�. Fig. 1A
shows the pulse, which is, in fact, supported in

ð�1; 0�. Fig. 1B shows the transverse magnetization

corresponding to the reflection coefficient, rdðnÞ, used
to design the pulse. Fig. 1C shows the transverse

magnetization attainable by using 4.93ms of additional
rephasing time. The minimum energy pulse, with the

same absolute magnetization profile, has approximately

the same duration as the minimum phase pulse, but

requires about 15ms to rephase. A truly self refocused

90� pulse has about the same duration, as the



Fig. 1. This is an example of a minimum phase (IST) pulse, designed using the flip angle profile, without direct control on the phase of the mag-

netization. It illustrates how a reasonably good magnetization profile can still be attained by using additional rephasing time, over and above what is

predicted by the upper limit of the support of the potential. (A) A 90� minimum phase pulse. (B) The transverse magnetization given by the reflection

coefficient used to design the pulse in (A). (Solid line¼m1, dashed line¼m2.) (C) The magnetization profile attainable by rephasing the profile shown

in (B) for an additional 4.93ms. For comparison �jmxy j is shown as a dotted line.

C.L. Epstein / Journal of Magnetic Resonance 167 (2004) 185–210 191
minimum phase-minimum energy pulse. But has both
much larger energy and maximum amplitude. It pro-

duces a much cleaner magnetization profile. See qþ3 ðtÞ
in Example 4.

Remark 3. In RF-pulse synthesis, the data is specified in

the frequency domain. Given rðnÞ, and perhaps some

bound states fðnj;CjÞg, the IST produces a potential,

which is a function of t. The time parameterization of
this potential is determined by the reduced scattering

data and thereby determines what sort of rephasing is

needed to achieve the specified magnetization profile. In

the IST approach the reflection coefficient is usually

taken to have bounded support. The Paley–Wiener

theorem for inverse scattering, see [22], implies that the

corresponding potential, qðtÞ, therefore cannot have

bounded support.
For practical applications one therefore needs to se-

lect a finite part of qðtÞ. In this context we speak of the

effective support of the potential. Operationally, an in-

terval ½t0; t1� contains the effective support of qðtÞ if, for
some window function, wðtÞ, supported in ½t0; t1�, the

reflection coefficient, rwðnÞ, of the windowed potential,

wðtÞqðtÞ, is a sufficiently good approximation to rðnÞ,
over a given interval. So long as there are no bound
states, the support properties of qðtÞ are largely deter-
mined by the smoothness of rðnÞ. If rðnÞ has a very sharp
transition, then qðtÞ dies off very slowly. In order to

achieve a good approximation to rðnÞ, a long part of qðtÞ
is required. On the other hand, if rðnÞ has only smooth

(i.e., long) transitions, then qðtÞ dies off very quickly. In

principle, there is no difficulty in attaining an arbitrarily

sharp transition in the magnetization profile. In practice

the required pulse is so long that relaxation effects will
dominate. Fig. 2A shows a minimum energy IST pulse,

truncated to show all values where the pulse assumes at

least 0.01% of its maximum amplitude, this part of the

pulse is 200ms long. Fig. 2B shows the transverse

magnetization profile it produces. The width of the

transition region, on each side, is about 5% of the width

of the passband.

The choice of window function is an important topic
in the practical application of IST pulses. Generally

speaking, cutting off a potential has the effect of reduc-

ing its selectivity and introducing phase errors. For

minimum energy pulses, the magnetization profile

changes gradually as the support of a smooth window

function is decreased. A sharp cutoff can lead rwðnÞ to

display considerable oscillations. A potential with

bound states often has a large maximum amplitude. In



Fig. 2. A minimum energy 90� IST pulse, which produces a very sharp

transition. The pulse duration is about 200ms and the bandwidth of

the excitation is about 700Hz. (A) A 90� minimum energy IST pulse

with a very sharp transition region. (B) The transverse magnetization

produced by the pulse in (A). (Solid line¼m1, dashed line¼m2.)

3 After this paper was completed it was brought to our attention

that formula (50), along with the conclusion that the minimum energy

pulse is the one with no bound states, appears in a paper of Rourke

and Saunders [18].
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examples, we have observed that parts of these poten-

tials with small relative amplitude are quite important
for achieving the desired magnetization profile. Hence, if

there are bound states, the problem of windowing be-

comes rather subtle. We therefore leave a careful anal-

ysis of this question to a future publication. For the

moment we consider only a simple, minimum energy

example.

Fig. 3 shows three truncations of a minimum energy

90� IST pulse, along with the magnetization profiles they
produce. Fig. 3A shows the pulse sharply truncated to

an interval containing all points, where it assumes at

least 0.001% of its maximum amplitude. Fig. 3C shows

the pulse, again truncated sharply, to the interval where

it assumes at least 1% of its maximum amplitude. Fi-

nally in Fig. 3E we show the segment of the pulse shown

in Fig. 3C but windowed by a function vanishing near

the end points of the interval. The corresponding mag-
netization profiles are shown in Figs. 3B, D, and F.
Using the 0.001% criterion gives a pulse of finite dura-

tion producing (within the displayed interval) an almost

perfect magnetization profile. Because, in Fig. 3C, qðtÞ is
fairly large near the points where it is being truncated,

the sharp truncation produces the oscillations seen in

Fig. 3D. Smoothing this transition removes the large

oscillations, but leads to the larger, localized phase er-

rors seen in Fig. 3F.

Remark 4. Our discussion of inverse scattering and its

applications to RF-pulse design is largely adapted from

[1,14,17].
4. The energy of the RF-envelope

We now state a formula for the energy of the pulse

envelope in terms of the reduced scattering data. The

underlying results from inverse scattering theory are due

to Zakharov, Faddeev, and Manakov. This formula is

related to formula (19) in [14]. Using this formula one

can approximately determine the energy in an SLR-

pulse in terms of a parameter, a0, arising in the SLR

method. Using a contour integral argument, one can
deduce an expression for a0 in terms of the bound states,

and reflection coefficient, and thereby obtain a formula

quite similar to Eq. (50) below. To the best of my

knowledge, no such formula appears in the MR-litera-

ture.3

Theorem 2. Suppose that qðtÞ is a sufficiently rapidly
decaying potential for the ZS-system, with reflection co-
efficient rðnÞ, and discrete data fðnj;CjÞ; j ¼ 1; . . . ;Ng,
thenZ 1

�1
jqðtÞj2 dt ¼ 1

p

Z 1

�1
logð1þ jrðnÞj2Þdnþ 4

XN
j¼1

Imnj:

ð50Þ

The proof of this result can be found in [1] or [6].
Note that the norming constants play no role in this

formula. Formula (50) is just one from an infinite

sequence of formulæ relating functionals of the po-

tential to functionals of the reduced scattering data,

see [6].

Combining Eqs. (10), and (50) with (44) we obtain the

following simple corollary.



Fig. 3. Various truncations of a 90�, minimum energy, IST pulse, and the magnetization profiles they produced. (A) Sharp truncation by 0.0s%

criterion. (B) Transverse magnetization produced by (A). (C) Sharp truncation by 1% criterion. (D) Transverse magnetization produced by (C). (E)

Smooth truncation by 1% criterion. (F) Transverse magnetization produced by (E).
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Corollary 1. If m1 is a sufficiently smooth magnetization
profile such that m1

1 þ im1
2 decays to zero as jnj ! 1,

and is square integrable, then the total energy of any RF-
envelope, x1ðtÞ þ ix2ðtÞ, which produces this magnetiza-
tion profile, satisfies the estimateZ 1

�1
jx1ðtÞ þ ix2ðtÞj2 dt

P
2

pc2

Z 1

�1
log 1

 
þ m1

1 ðnÞ þ im1
2 ðnÞ

1þ m1
3 ðnÞ

���� ����2
!
dn: ð51Þ

Equality holds in this estimate if and only if the ZS-sys-
tem with the corresponding potential has no bound states.
Note that the energy depends only on the flip angle,

and not on the phase of the magnetization profile. In-

deed, the argument of the log in (51) can be rewritten as

2ð1þ m3ðnÞÞ�1
. From the corollary it is evident that the

lowest energy RF-envelope is obtained by solving the

inverse scattering problem with no bound states.
Example 1. A common way to construct a selective 90�-
pulse is to approximate rðnÞ by a function of the form

rnðnÞ ¼ ð1þ n2nÞ�1
. To obtain a minimum energy pulse,

one can use, as the reduced scattering data, rnðnÞ, for n on
the real axis with no bound states. Using formula (50),

we see that the energy of the minimum energy pulse is
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Emin;n ¼
2 log 2

p
þO

1

n

	 

: ð52Þ

A self refocused pulse is obtained by using the poles of

rnðnÞ in the upper half plane to define bound states. The
energy of the self refocused pulse is given by

Eref ;n ¼ Emin;n þ
4

sinðp=2nÞ �
2 log 2

p
þ 8n

p
: ð53Þ

Remark 5. In much of the MR-literature it is asserted

that the energy of a selective pulse is proportional to the

square of the flip angle. This is approximately true for
small flip angles. For a selective pulse, producing a u-flip
for frequencies in a band of width B, formula (51) im-

plies that the energy satisfies

EB;u P
B
pc2

log
2

1þ cosu

	 

: ð54Þ

Inversion and refocusing pulses are very important in all

applications of MR. Such a pulse carries ½0; 0; 1�y to

½0; 0;�1�y. If this is the case at offset frequency n0, then
rðn0Þ ¼ 1. It would therefore require infinite energy to

exactly invert ½0; 0; 1�y, for offset frequencies belonging

to an interval of positive length. Formula (51) shows

that the energy required to flip spins, with offset fre-

quencies belonging to a band of width B, through an
angle p� �, is at least

B
pc2

log
2

1� cos �

	 

’ 2B

pc2
log

4

�

	 

: ð55Þ

Remark 6. If rðnÞ is the reflection coefficient determined

by qðtÞ, then, for k > 0, rðknÞ is the reflection coefficient

determined by the potential k�1qðk�1tÞ. This is true,

whether or not qðtÞ has bound states, and agrees with

the well-known heuristic principle that the effective

support of the RF-envelope is inversely proportional to

the bandwidth of excitation. It also shows that the

maximum amplitude and energy of the RF-envelope are
proportional to the bandwidth. The L2-oscillation of the

RF-envelope,
R
jqtj2 dt, is proportional to the square of

the bandwidth.
5. Inverse scattering for the ZS-system

There are several different approaches to solving the

inverse scattering problem, stated in Section 3, see [1–3]

or [6]. In this section we describe the solution of this

problem via the Marchenko equations. We again follow

the presentation in [1]. We generally suppose that the

fnjg are distinct complex numbers with positive imagi-
nary parts. This simplifies the exposition, though it is
not necessary for the applicability of the inverse scat-
tering method. To begin with, we assume that the re-

flection coefficient is smooth and rapidly vanishing at

�1.

Given the reduced scattering data frðnÞ; n 2 R;
ðn1;C1Þ; . . . ; ðnN;CN Þg, with ni 6¼ nj, for i 6¼ j, define the
function

f ðtÞ ¼ 1

2p

Z 1

�1
rðnÞeint dn� i

XN
j¼1

Cje
injt: ð56Þ

This is the inverse Fourier transform of rðnÞ with a

correction added to account for the bound states. The

finite sum in (56) is exponentially decreasing as t tends to
þ1. For each t 2 R, define the operator Ft by

FthðsÞ ¼
Z 1

t
f ðsþ yÞhðyÞdy for s 2 ½t;1Þ: ð57Þ

We denote the adjoint of Ft, as an operator on

L2ð½t;1ÞÞ, by F �
t . For each t 2 ð�1;1Þ, the (right)

Marchenko equation is the integral equation, for a

function ktðsÞ defined for s 2 ½t;1Þ, given by

Id
��

þ F �
t Ft
�
kt
�
ðsÞ ¼ f �ðt þ sÞ; ð58Þ

or more explicitly

ktðsÞ þ
Z 1

t

Z 1

t
f �ðs

�
þ yÞf ðy þ xÞdy

�
ktðxÞdx

¼ f �ðt þ sÞ: ð59Þ

The solution of the inverse scattering problem is gi-

ven in the following theorem:

Theorem 3. Given a smooth, rapidly decaying reflection
coefficient rðnÞ, and a finite set of pairs fðnj;CjÞ :
j ¼ 1; . . . ;Ng, with the fnjg distinct, Imnj > 0 and Cj 6¼ 0

for j ¼ 1; . . . ;N , Eq. (58) has a unique solution for every
t 2 R. If

qðtÞ ¼ �2ktðtÞ; ð60Þ
then the ZS-system, with this potential, has reflection
coefficient r. It has exactly N bound states at frequencies
fn1; . . . ; nNg, and the relations (34) hold at these points.

This theorem is proved in [2,6].

Remark 7. As the operator ðIdþ F �
t FtÞ is self adjoint and

positive definite, it is an elementary fact that (58) has a

unique solution. Since Ft is a compact operator, it is

straightforward to numerically approximate this equa-

tion. We defer a discussion of the practicalities of solv-

ing (58) to Section 6. For the moment suffice it to say

that this equation can be solved by a simple iteration,

for values of t, such thatZ 1

2t
jf ðxÞjdx < 1: ð61Þ
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There is also a ‘‘left’’ Marchenko equation, given in
Section 6, where the integrals are over half lines of the

form ð�1; t�. In this formulation, the analogous finite

sum of exponentials is decreasing as t tends to �1.

Using both the left and right Marchenko equations, it is

possible to obtain an algorithm for solving (59). In

Sections 6 and 7 we give the foundations for this algo-

rithm.

Remark 8. As noted above, there is a similar result if a
has higher order zeros. In this case the definition of f
needs to be modified; see [1].

The results of this section show that, at least in

principle, the IST provides an infinite dimensional space
of solutions to the RF-pulse synthesis problem. A

practical magnetization profile has bounded support,

and may be approximated by a smooth function. While

the choice of approximation is a basic part of any

practical pulse synthesis algorithm, we do not consider it

systematically in this paper. This leaves the question of
choosing the bound states to obtain an ‘‘optimal’’ RF-

pulse envelope, which produces the desired magnetiza-

tion profile. The notion of optimality depends on the

intended application. It usually entails a balance among

the amplitude, energy, duration, as well as the rephasing

time. In the next two sections we give an algorithm,

which allows for an arbitrary specification of bound

states and norming constants.
6. Solving the Marchenko equation with small data

In this and the next section we discuss an algorithmic

approach for finding potentials with a given magneti-

zation profile and arbitrarily selected bound states. It

entails using the right and left Marchenko equations,
(58) and (67), respectively. In [17], Rourke and Morris

consider several methods for solving the Marchenko

equation. For small data they directly solve the (right)

Marchenko equation. When incorporating bound states,

they adapt a method of Moses and Proesser [12].

The method of Moses and Proesser is to approximate

the reflection coefficient by a rational function with all

of it poles in the lower half plane. This ensures that the
resultant potential is supported in ð�1; 0�, and has no

bound states. In [17], this condition on the placement of

the poles is removed. In Examples 2 and 3 Morris and

Rourke [17], use rational approximations, f~rnðnÞg, for
rðnÞ with poles in both half planes; the solutions they

find are supported in ð�1; 0�. However, the poles of
~rnðnÞ in the upper half plane force the resultant potential

for the ZS-system to have bound states. On the one
hand, the bound states increase the energy and ampli-

tude of the RF-envelope, without affecting the magne-

tization profile. On the other hand, by using bound
states, Morris and Rourke obtain truly self refocused
pulses. Applying formula (50) to Example 2 of [17], we

see that the energy required by the magnetization profile

used in these examples (the integral in (50)) is 1:1. The
energy resulting from bound states (the finite sum in

(50)) is 2513 for n ¼ 20, and 44,334 for n ¼ 84.

We now present an algorithm to solve the Eq. (59)

directly. The algorithm is described in the realm of

continuum mathematics, but can be approximately im-
plemented on a computer. This algorithm allows for the

arbitrary specification of bound states, independently of

the behavior of rðnÞ off the real axis. Eq. (58) involves

integration over positive rays. When the reflection co-

efficient is large, as is the case with an inversion pulse, or

there are bound states, then the right Marchenko

equation becomes ill conditioned as t tends to �1. In

this case it is useful to work both ends against the
middle. For that purpose we give the left Marchenko
equation, which involves integration over negative rays.

Conceptually, the left equation arises by doing scatter-

ing theory for Eq. (18) beginning with solutions nor-

malized as t ! þ1, instead of as t ! �1.

Recall that r ¼ b=a; given r, and the locations of the

bound states, we can use (40) to determine a, and

therefore b. For n 2 R, define

~rðnÞ ¼ b�ðnÞ
aðnÞ ; ð62Þ

and let fn1; . . . ; nNg be the zeros of a in the upper half
plane. The kernel function for the left Marchenko

equation is defined by

gðtÞ ¼ 1

2p

Z 1

�1
~rðnÞe�int dt � i

XN
j¼1

eCje
�injt; ð63Þ

where the coefficients feCjg are given by

eCj ¼
1

Cj½a0ðnjÞ�2
: ð64Þ

The finite sum of exponentials in (63) decays as t tends
to �1. The values fa0ðnjÞg are easily computed using

formula (40). It implies that

a0ðnkÞ¼
1

nk �n�k

�
Y
j 6¼k

nk �nj
nk �n�j

 !
exp

i

2p

Z 1

�1

logð1þjrðfÞj2Þdf
f�nk

" #
:

ð65Þ

If the bound states are close together, then ja0ðnkÞj2 may

become quite small; this, in turn, makes eCj quite large.

So even though the exponentials in (63) decay rapidly as
t ! �1, the finite sum in (63) can be very large for t
near to zero. We consider this further in the next section.

For each t 2 R, define an operator from L2ðð�1; t�Þ
to itself by
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GtlðsÞ ¼
Z t

�1
gðsþ yÞlðyÞdy: ð66Þ

For each t 2 R, the left Marchenko equation is

Id
��

þ GtG�
t

�
lt
�
ðsÞ ¼ �gðsþ tÞ; for s 2 ð�1; t�; ð67Þ

or more explicitly

ltðsÞ þ
Z t

�1

Z t

�1
gðs

�
þ yÞg�ðy þ xÞdy

�
ltðxÞdx

¼ �gðsþ tÞ: ð68Þ

If ltðsÞ solves this equation, then the potential defined by

qðtÞ ¼ 2ltðtÞ; ð69Þ
has reflection coefficient rðnÞ. It has exactly N bound

states located at frequencies fn1; . . . ; nNg, and the rela-

tions (34) hold at these points. In principle, the potential

could be recovered from the reduced scattering data
using either Eq. (58) or (67), alone. As a practical mat-

ter, there is a s0 (which depends on the scattering data)

such that a much more stable algorithm follows by using

Eq. (58) to determine qðtÞ for tP s0 and Eq. (67), to

determine qðtÞ for t < s0.
Eq. (67) can be derived from (58) by considering the

scattering theory for the ‘‘time reversed’’ potential

q�ðtÞ ¼ �qð�tÞ: ð70Þ
For example, it is not difficult to show that the reflection

coefficient for q� is

r�ðnÞ ¼ � bð�nÞ
a�ð�nÞ : ð71Þ

A detailed derivation can be found in [6]. In most of our

analysis we concentrate on the right Marchenko equa-

tion, (58), with the understanding that everything said

applies, mutatis mutandis, to the left formulation as well.

Using both equations leads to a practical method for

finding q.

Remark 9. Using Eqs. (60), (69), and (71) it is not dif-
ficult to show that a real pulse is even ðqðtÞ ¼ qð�tÞÞ if
and only if bðnÞ is real valued.

We give two rather different, constructive existence

results for solutions to Eqs. (58) and (67). The first result

is for large jtj (or small data) and includes a very precise

pointwise bound for jqðtÞj in this domain. This is useful

for assessing the effective support of the potential. The

other result is an existence result that is valid for all

times. Define the functions:

Mf ðtÞ ¼ sup
sP t

jf ðsÞj; If ðtÞ ¼
Z 1

t
jf ðsÞjds;

MgðtÞ ¼ sup
s6 t

jgðsÞj; IgðtÞ ¼
Z t

�1
jgðsÞjds:

ð72Þ
We say that the right, resp. left, Marchenko equation
can be solved by simple iteration on the interval ½t;1Þ,
resp. ð�1; t�, if the sequence defined by

k0t ðsÞ¼ f �ðsþ tÞ; kjt ðsÞ¼ f �ðsþ tÞ�F �
t Ftk

j�1
t ðsÞ; j¼ 1;2; . . .

resp:;

l0t ðsÞ¼�gðsþ tÞ; ljtðsÞ¼�gðsþ tÞ�GtG�
t l

j�1
t ðsÞ; j¼ 1;2; . . . ;

ð73Þ

converges uniformly to ktðsÞ for s 2 ½t;1Þ, resp. to ltðsÞ
for s 2 ½�1; t�.

Remark 10. In [17], Morris and Rourke solve the right

Marchenko equation in several different ways. For small

data they use an algorithm based on the iteration de-

fining fkjt ðsÞg, given in (73).

Theorem 4. If If ð2tÞ < 1, resp., Igð2tÞ < 1, then the right,
resp. left, Marchenko equation, can be solved by simple
iteration on the interval ½t;1Þ, resp. ð�1; t�. The solu-
tions satisfy the estimates

jktðsÞj6
Mf ð2tÞ

1� I2f ð2tÞ
; for s 2 ½t;1Þ;

jltðsÞj6
Mgð2tÞ

1� I2g ð2tÞ
; for s 2 ð�1; t�: ð74Þ

The proof is given in the Appendix A. Note that no

assumption is made concerning the presence or absence

of bound states.

The estimates in (74) imply that, so long as the hy-

potheses of the theorem hold, the potential qðtÞ satisfies
the estimates

jqðtÞj6 2Mf ð2tÞ
1� I2f ð2tÞ

; or jqðtÞj6 2Mgð2tÞ
1� I2g ð2tÞ

: ð75Þ

This shows that the growth and support of qðtÞ are de-

termined by those of f and g. In Fig. 4 we compare the

magnitude of the minimum energy 140� IST pulse (with

a 25% transition window) to min ð2Mf ð2tÞÞ=
�

ð1� I2f ð2tÞÞ; ð2Mgð2tÞÞ=ð1� I2g ð2tÞÞg. This plot shows

that the bound derived in Theorem 4 gives a very good

estimate for both the support and growth of q. These
estimates show that, when studying the effects on the

support of qðtÞ, of using different approximations for

rðnÞ, or the addition of bound states, it suffices to work

with f ðtÞ and gðtÞ. It is not necessary to actually solve

the Marchenko equations.
7. Solving the Marchenko equation with large data

If If ðtÞP 1 then we may need to modify the iter-

ation, defined above, to find a solution to Eq. (58).

In this section we present a theoretical algorithm, for

solving the Marchenko equations, which does not

require any smallness assumptions. Given any reflec-



Fig. 4. A graph of the magnitude of the minimum energy 140� IST pulse having a 25% transition zone (solid line) and of

minfð2Mf ð2tÞÞ=ð1� I2f ð2tÞÞ; ð2Mgð2tÞÞ=ð1� I2g ð2tÞÞg (dashed line).
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tion coefficient and choice of bound states, this al-

gorithm could, in principle, be used to find the po-

tential. For certain applications it has proven to be

very slow, and not sufficiently accurate. We include

this material for mathematical completeness, and be-

cause it reveals certain special properties of the
Marchenko equations in this case. In collaboration

with Jeremy Magland, we have recently found a very

fast and stable approach for solving the left and right

Marchenko equations; it will be the subject of a fu-

ture joint publication.

We start with an L2-norm estimate for Ft.

Lemma 1. If f 2 L1ð½t;1ÞÞ then, for every h 2 L2ð½t;1ÞÞ
we have the estimate

kFthkL2ð½t;1ÞÞ 6 If ð2tÞkhkL2ð½t;1ÞÞ: ð76Þ

The proof is in the Appendix A.

The fact that If ð2tÞ ¼ If � ð2tÞ, and the lemma imply
that

kF �
t FthkL2ð½t;1ÞÞ 6 If ð2tÞkFthkL2ð½t;1ÞÞ 6 If ð2tÞ2khkL2ð½t;1ÞÞ:

ð77Þ
To simplify the notation we set ct ¼ If ð2tÞ2. As a map

from L2ð½t;1ÞÞ to itself, F �
t Ft is a self adjoint, positive

operator. The estimate in (77) implies that its spectrum

lies in ½0; ct�, and therefore the spectrum of F �
t Ft �

ct
2
Id

� �
lies in � ct

2
; ct
2

� �
. The norm of F �

t Ft �
ct
2
Id

� �
is therefore, at

most, ct=2. We rewrite Eq. (59) in the form

Id

�
þ 2

2þ ct
F �
t Ft

�
� ct

2
Id
��

kt ¼
2

2þ ct
f �ðt þ sÞ: ð78Þ
The norm of the operator ð2=ð2þ ctÞÞðF �
t Ft �

ct
2
IdÞ is

less than ct=ð2þ ctÞ, which is, in turn, less than 1. Eq.

(78) can therefore be solved by iteration. We define a

new iteration by setting

~k0t ðsÞ ¼
ct

2þ ct
f �ðsþ tÞ;

~kjt ðsÞ ¼
ct

2þ ct
f �ðs
�

þ tÞ � F �
t Ft

�
� ct

2
Id
�
~kj�1
t

�
: ð79Þ

We have the following convergence result.

Proposition 1. If f 2 L1ð½2t;1ÞÞ then the sequence
defined in (79) converges in L2ð½t;1Þ to the solution of
Eq. (58).

Proof. This statement is an immediate consequence of

the fact that the L2-norm of the operator

ðct=ð2þ ctÞÞðF �
t Ft �

ct
2
IdÞ is less than 1. �

Remark 11. If oxf ðxÞ also belongs to L1ð½2t;1ÞÞ, then
the solution converges locally uniformly to the unique
solution of (58). While this statement is not difficult to

prove it requires mathematical techniques beyond the

scope of this paper.

Remark 12. We can apply the same reasoning to the left

Marchenko equation. Set dt ¼ Igð2tÞ2. Eq. (67) is

equivalent to

Id

�
þ 2

2þ dt
GtG�

t

	
� dt

2
Id


�
lt

¼ � 2

2þ dt
gðt þ sÞ: ð80Þ
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On L2ðð�1; t�Þ, the operator ð2=ð2þ dtÞÞðGtG�
t � dt

2
IdÞ

has norm less than dt=ð2þ dtÞ. Thus, the sequence

~l0t ðsÞ ¼ � dt
2þ dt

gðsþ tÞ;

~ljtðsÞ ¼ � dt
2þ dt

gðs
	

þ tÞ þ GtG�
t

	
� dt

2
Id



~lj�1
t



ð81Þ

converges, in L2ðð�1; t�Þ, to the solution of (67).

Remark 13. In some of the examples in this paper, we

have simply discretized the Marchenko equations, and

used the iteration schemes defined in Eqs. (79) and (81)

to find fktþj ðt
þ
j Þg and flt�j ðt

�
j Þg. For these iterative algo-

rithms, the size of the error at iterate n is proportional to

1þ 2
ct

� ��n
or 1þ 2

dt

� ��n
.

As remarked above, when the bound states bunch

together, the left norming constants, feCjg, can be-

come quite large. If the left norming constants are

large then, as t approaches s0, ct, and dt become quite

large, and these iteration schemes converge very

slowly. This approach could likely be improved by

using preconditioning. However, we do not pursue
this further, for, as noted above, we have, in collab-

oration with Jeremy Magland, found a much faster

and more stable method for solving the Marchenko

equations.
8. Comparison with the Shinnar–LeRoux method

In this section, the function riðnÞ, is the reflection

coefficient defined by an ‘‘ideal’’ magnetization profile,

m1
i , as in Eq. (44). A good example to keep in mind is a

u-flip for offset frequencies in ½�w;w�; the corresponding
reflection coefficient is

rðnÞ ¼
sinu

1þcosu for n 2 � w
2
; w
2

� �
;

0 for n 62 � w
2
; w
2

� �
:

(
ð82Þ

The foundation of the Shinnar–Le Roux (SLR) al-

gorithm is the hard pulse approximation. In this ap-

proach one designs a potential of the form

q0ðtÞ ¼
XN
j¼1

ljdðt � jDÞ; ð83Þ

to produce an approximation to the ideal magnetization

profile for m in a subinterval of

½�D�1p;D�1p�: ð84Þ

A potential like q0ðtÞ presents no special difficulties

for the forward scattering analysis presented in Sec-

tion 3. In this case the scattering matrix takes the

special form
sðnÞ ¼ eiNDnA0ðe�iDnÞ eiNDnB�
0ðe�iDnÞ

e�iNDnB0ðe�iDnÞ �e�iNDnA�
0ðe�iDnÞ

� �
; ð85Þ

where A0ðzÞ and B0ðzÞ are polynomials of degree N � 1.

The reflection coefficient r0ðnÞ, defined by q0ðtÞ, is the

periodic function of period D�12p given by

r0ðnÞ ¼
e�2iNDnB0ðe�iDnÞ

A0ðe�iDnÞ : ð86Þ

The SLR algorithm has two parts: (1) Find polyno-

mials of the given degrees, so that r0ðnÞ is, in a certain

sense, an approximation to riðnÞ. (2) Use a recursive

method for determining the coefficients, fljg, so that

q0ðtÞ, given in (83), has reflection coefficient r0ðnÞ. Of

course, a sum of d-pulses is nonphysical, requiring infi-

nite energy to realize. The RF-envelope that is actually
used is a ‘‘softened’’ version of q0ðtÞ. For example, one

could replace each ljdðt � jDÞ by a boxcar pulse of

width D with the same area, leading to the softened pulse

q1ðtÞ ¼
XN
j¼1

lj

D
v½0;DÞðt � jDÞ: ð87Þ

While the difference q0ðtÞ � q1ðtÞ can only be made small

in the sense of generalized functions, the difference

jr0ðnÞ � r1ðnÞj can be made pointwise small, for n in a
fixed interval, provided that none of the fljg is too

large. This is what is usually meant by the ‘‘hard pulse

approximation,’’ see [19,22].

Beyond the details of algorithmic implementations,

there are three principal differences between the IST

method outlined above, and the SLR approach. The

first is that, in the IST approach, one is free to specify

the locations of the bound states and norming constant,
entirely independently of the reflection coefficient on the

real axis. In SLR, one is very constrained in both the

locations of the bound states, and the norming con-

stants. Moreover, these constraints are of a rather im-

plicit nature. The second major difference is that, in IST,

a pulse is designed using the magnetization profile,

whereas in SLR, it is designed using the flip angle pro-

file. The third difference is that, in SLR, the duration of
the pulse is essentially specified in advance. It should be

fairly clear that one cannot simultaneously specify the

magnetization profile, and the duration, of the pulse.

This is certainly the case for minimum energy pulses.

Indeed, the second and third differences are intimately

related. In order to be able to specify the pulse duration,

in the SLR approach, direct control over the phase of

the magnetization profile is sacrificed. To illustrate the
relationship between pulse duration, and the phase of

the magnetization profile we consider the example of a

minimum energy 90� SLR-pulse. We follow the pre-

sentation of SLR given in [14].

Suppose that the ideal reflection coefficient is
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riðnÞ ¼
bðnÞ
aðnÞ ¼

1 for n 2 ½�1; 1�;
0 for n 62 ½�1; 1�;



ð88Þ

with jaðnÞj2 þ jbðnÞj2 ¼ 1, and aðnÞ analytic in the upper

half plane. Note that the flip angle at offset n is given by
2 sin�1ðjbðnÞjÞ. A polynomial, B0ðzÞ, of degree N � 1, is

found so that B0ðe�iDnÞ has linear phase, and jB0ðe�iDnÞj
approximates jbðnÞj over the interval ½�D�1p;D�1p�. If
one specifies tolerances on the in-slice, and out-of-slice

ripple, then the transition width is essentially an output

of the algorithm. Because jB0ðe�iDnÞj is designed as an

approximation to jbðnÞj rather than B0ðe�iDnÞ as an ap-

proximation to bðnÞ, it is at this juncture that direct
control over the phase of r0ðnÞ is lost.

The next step is the determination of A0ðzÞ; it must be

a polynomial of degree N � 1 such that

jA0ðzÞj2 þ jB0ðzÞj2 ¼ 1; if jzj ¼ 1: ð89Þ
There are many possible choices, which are labeled, in

essence, by the locations of the zeros of A0ðzÞ. The
minimum energy SLR pulse is obtained by taking the

zeros of A0ðzÞ to lie inside the unit disk. In this case A0ðzÞ
is determined by the condition that log jA0ðzÞj and

argA0ðzÞ are a Hilbert transform pair for jzj ¼ 1. Noting

that jA0ðzÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jB0ðzÞj2

q
, we see that r0ðnÞ, as defined

in Eq. (86), is not an approximation to riðnÞ, but rather
an approximation to e�2isnrSLRðnÞ, where

rSLRðnÞ ¼
jbðnÞj
aðnÞ ¼ jbðnÞj

bðnÞ riðnÞ: ð90Þ

As noted in Section 3, the linear phase, 2sn, corresponds
to shifting q0ðtÞ in time by s-units. While the allowable

in-slice and out-of-slice ripple, and therefore the tran-

sition width, make some contribution to the control of

the duration of an SLR pulse, (especially for very short

pulses), the possibility of specifying the duration comes

from choosing jB0j as an approximation to jbj rather
than B0 as an approximation to b.

Fig. 5A shows riðnÞ (which is real) as well as the real

and imaginary parts of rSLRðnÞ (defined in Eq. (90)) for a

90� pulse. Fig. 5B shows the phase of rSLRðnÞ. Near the

middle of the passband, it is well approximated by a

linear function, and therefore, most of the phase error

produced by q0ðtÞ can be removed by using a slightly

longer rephasing time. Fig. 6 shows both the absolute
values of the transverse magnetization, and the trans-

verse magnetization for three 90� SLR pulses. Because

m3 ¼ 0 for a 90�-flip, these are essentially plots of jr0ðnÞj
and r0ðnÞ, respectively. Each pulse has a 1KHz band-

width, and 1% in-slice and out-of-slice ripple. The pulses

have durations of 10, 20, and 30ms, respectively. The

selectivity of the pulse increases somewhat as the dura-

tion increases. For each pulse, the rephasing has been
adjusted to get the minimum phase error in the pass-

band. But for the additional rephasing, which flattens

the magnetization profile near the center of the window,
as the pulse duration increases, the magnetization profile
becomes a better and better approximation to the

function rSLRðnÞ, shown in Fig. 5A. Finally, the plots in

Figs. 7A and B show the same information for a 1 kHz,

minimum energy 90� IST pulse, having essentially the

same ripple, and transition width as the 10ms SLR

pulse. The IST pulse is shown in Fig. 7C; note that the

IST pulse produces essentially no phase error, but has a

duration of about 16ms. It should also be noted that
this IST pulse has a rephasing time very close to that of

the 10ms SLR pulse.

Tracing back through the computations, we see that

the phase of rSLRðnÞ is determined by the Hilbert

transform of logð1þ jriðnÞj2Þ. It is the more or less ac-

cidental fact that this function is close to linear, within

the support of riðnÞ, which allows the SLR design pro-

cedure to produce a pulse, with a specified duration,
which can be rephased to give a reasonably good, co-
herent 90�-flip over the specified band.

The phase of B0 is sometimes determined by other

considerations. Above we used the linear phase condi-

tion, other common choices are the ‘‘minimum or

maximum’’ phase conditions. In all cases, the reflection

coefficient produced by the potential, is an approxima-

tion to ei/ðnÞriðnÞ, for a nonconstant and nonlinear
function /ðnÞ. It is fortuitous that, in many instances,

/ðnÞ is approximately linear over the support of riðnÞ,
and, therefore, by adjusting the rephasing time, one can

still attain a final magnetization close to the ideal. It also

advantageous that small errors in the phase of the ex-

citation often lead only to a minor decrease in the signal

strength. This may not be the case for composite pulses,

where the phase errors can accumulate, leading to sig-
nificant signal loss. When using nonFourier encoding

schemes, e.g., wavelets, it may be advantageous to use

an approach that gives direct control over the phase of

the excitation.

We close this section by briefly returning to the

question of bound states in the SLR approach. The

bound states correspond to the zeros of A0ðzÞ for jzj > 1.

Let fz1; . . . ; zN�1g be the zeros of the minimum phase
solution to (89), Amin;0ðzÞ. The other solutions to Eq.

(89) are in two-to-one correspondance with the subsets

of the set f1; . . . ;N � 1g : Let I ¼ f16 i1 < . . . <
il 6N � 1g be such a subset, and define

AI ;�;0ðzÞ ¼ �Amin;0ðzÞ
Yl
j¼1

1� z�ij z

z� zij

	 

: ð91Þ

We observe that this is a polynomial of degree N � 1

and that, if jzj ¼ 1, then jAI ;�;0ðzÞj ¼ jAmin;0ðzÞj. There-
fore, each AI ;�;0ðzÞ is also a solution to (89). Using the

second part of the SLR algorithm, we can use ðAI ;�;0;B0Þ
to design pulses having the same flip angle profile as the

minimum energy pulse described above. These pulses

have larger energy, and their reflection coefficients have
different phases



 !

Fig. 5. Plots showing the phase error introduced in the SLR design process. (A) This plot shows the ideal reflection coefficient for a 90�-pulse (solid
line), as well as the real (dashed line), and imaginary (dot-dash line) parts of the actual ‘‘ideal’’ reflection coefficient, rSLRðnÞ used in the design of the

minimum energy SLR pulse. (B) This plot shows the phase of rSLRðnÞ: Near the center of the passband, it is well approximated by a linear function;

this makes it possible to largely remove the designed in phase error.
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rI ;�;0ðnÞ ¼ �rmin;0ðnÞ
Yl
j¼1

1� z�ije
�iDn

e�iDn � zij
: ð92Þ

This indicates the constraints one encounters when in-

troducing bound states in the SLR approach, at least

using the method outlined in [14]. In [16] and [15],

Pickup et al. observed that moving zeros of A0, in the

manner described above, increases the total energy of
the pulse. This is consistent with formula (50), as, under

the mapping n $ z ¼ e�iDn, the exterior of the unit disk,
in the SLR approach, corresponds to the upper half

plane, in inverse scattering theory.
9. Practical aspects of IST pulse design

In this section we outline the steps required to design

a usable pulse with the inverse scattering transform, and

give several examples of pulses. This discussion is meant

to be illustrative rather than prescriptive; we will return

to these questions in a later publication.



Fig. 6. These are the magnetization profiles produced by 1 kHz 90� minimum energy SLR pulse with 1% in-slice and out-of-slice ripple, and the

indicated durations. These figures show the effects of changing the duration of an SLR pulse on the resulting transverse magnetization. (The SLR-

pulses and magnetization profiles were produced using matpulse-2.4 by Gerald Matson and Mark Elliott [11].) (A) Ten milliseconds, absolute

transverse magnetization; (B) 10ms, transverse magnetization; (C) 20ms, absolute transverse magnetization; (D) 20ms, transverse magnetization; (E)

30ms, absolute transverse magnetization; and (F) 30ms, transverse magnetization.
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The input to the IST pulse design process is an ideal

magnetization profile, m1ðmÞ, which, via Eq. (44), de-
fines an ideal reflection coefficient riðnÞ. Frequently, the
ideal reflection coefficient is a discontinuous function,

see, e.g., Eq. (82).

1. The first step in IST pulse synthesis is to choose a

smooth function with bounded support, rdðnÞ, which
is an approximation to riðnÞ. So far as the algorithm

is concerned, the choice of approximation, rdðnÞ, is
constrained only by the need to have its Fourier
transform, r̂dðtÞ, decay reasonably quickly. There is

no need to use any special type of function such as
a rational or meromorphic function. As with SLR

pulse design, the ‘‘transition width,’’ and ripple di-
rectly effect the duration of the final pulse.

2. The next step is to choose the locations of the bound

states and the norming constants, fðn1;C1Þ; i ¼ 1; . . . ;
Ng. For a minimum energy pulse, no bound states are

used. For a self refocused pulse, rdðnÞ is usually taken

to be a rational function with simple poles. The fnjg
are then the poles of rdðnÞ in the upper half plane, and

the fCjg are the residues of rdðnÞ at these poles.
3. Given the data frdðnÞ; ðn1;C1Þ; . . . ; ðnN ;CN Þg, we

determine the left reflection coefficients and left



Fig. 7. For comparison with Figs. 6 (A, B), plots (A) and (B) show the absolute transverse magnetization, and transverse magnetization for the

minimum energy 1 kHz, 90� IST pulse with a transition width, and ripple comparable to the 10ms SLR pulse. Plot (C) shows the pulse, indicating a

duration of about 16ms, and a rephasing time of 6.5ms. (A) Absolute transverse magnetization. (B) Transverse magnetization. (C) Pulse profile for a

minimum energy 90� IST pulse.
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norming constants, using Eqs. (62) and (64), respec-

tively. With this data we can now determine the ker-
nel functions, f and g, for the right and left

Marchenko equations, using Eqs. (56) and (63), re-

spectively. In practice these functions are computed

at sample points by using the FFT. The functions

Mf ðtÞ and MgðtÞ are computed (see Eq. (72)), the

‘‘switching’’ time s0 is determined as the unique solu-

tion to the equation Mf ðs0Þ ¼ Mgðs0Þ.
4. The left and right Marchenko equations are approx-

imately solved to determine fqdðtjÞg at sample points

ftjg belonging to a sufficiently large interval ½t�; tþ�.
This interval should contain the effective support of

qdðtÞ, which can be determined, a priori, by using

the estimates in (75). The right equation is used for

tj P s0 and the left equation for tj < s0. The fineness

of the sample spacing, D, is determined by the range

of offset frequencies present in the sample. For, as is
well known, using a sum of boxcar pulses of duration

D to approximate qdðtÞ, produces sidelobes in the

magnetization profile at intervals of length 2D�1p.
5. The duration of the pulse produced by the IST (i.e.,

the effective support of qdðtÞ) may exceed what is al-

lowable in the given application. In this case the pulse

is truncated, and usually windowed with a smoothing
function, e.g., cos2ðBðt � t0ÞÞ. This leads to changes in

the excitation profile, usually a decrease in selectivity
as well as phase errors, see Fig. 3. Sometimes a better

result is obtained by starting over, replacing rdðnÞ by
a ‘‘smoother’’ function, i.e., a function with a wider

transition region.

We now give some illustrative examples of pulses,

designed using the IST, along with the transverse mag-

netization profiles they produce. In the transverse

magnetization profiles, m1ðmÞ is shown with a solid line,
and m2ðmÞ with a dashed line. With the exception of

Example 4, in the pulse plots, x1ðtÞ is shown with a solid

line, while x2ðtÞ is shown with a dashed line.

9.1. The details of the design of a 90�-flip

We start by giving the details of the design process for

a minimum energy, 90� flip.

Example 2. The ideal reflection coefficient is given by

formula (88). We approximate riðnÞ by rdðnÞ, a three

times differentiable, piecewise polynomial function with

support equal to ½�1:2; 1:2�. This function is shown as

the solid line in Fig. 8D. The kernel functions for the

right and left Marchenko equations are shown in Figs.



Fig. 8. The steps of the IST design process for a minimum energy 90� pulse. (A) f , the kernel function for the right Marchenko equation. (B) g, the
kernel function for the left Marchenko equation. (C) The potential qdðtÞ. (D) The transverse magnetization produced by qdðtÞ. This is also a plot of

rdð2nÞ. (E) A smoothly windowed version of qdðtÞ. (F) The transverse magnetization produced by the windowed potential shown in (E).

C.L. Epstein / Journal of Magnetic Resonance 167 (2004) 185–210 203
8A and B and the potential qdðtÞ (within its effective

support) is shown in Fig. 8C. The Marchenko equations

were solved using the simple iteration scheme described

in Section 6. It required about 2min on a 2GHz Pen-

tium Linux box to determine qd at 830 points.

The transverse magnetization produced by qdðtÞ is

shown in Fig. 8D. Fig. 8E shows a cos2-truncated ver-
sion of qd , and Fig. 8F shows the transverse magneti-

zation it produces. As expected, the truncated pulse is

somewhat less selective, and has some phase error. It is

notable that the phase error produced by truncating an

IST pulse is quite different from the phase error that
arises in an SLR pulse with a similar duration and ab-

solute magnetization profile. In most of the examples we

have computed, the phase error, which results from

smoothly windowing an IST pulse, is concentrated in

the transition region.

9.2. The effect of adding bound states

In these examples we demonstrate the flexibility of

the IST method with regard to the inclusion of bound

states. These potentials were found using Magland�s
algorithm.
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Example 3. In this example we show that the data used
to define the bound states is independent of the reflec-

tion coefficient. For rdðnÞ we use the piecewise polyno-

mial reflection coefficient defined in the previous

example. This function clearly has no analytic extension

to the upper half plane. We locate the bound states at

the solutions, in the upper half plane, of the equation

n18 þ 1 ¼ 0

nj ¼ epi
2j�1
18 ; j ¼ 1; . . . ; 9: ð93Þ

For our first example, q1ðtÞ, we use as norming con-

stants the residues of ð1þ n18Þ�1 at these points. To six

significant digits, these are:

f� 0:054712 � 0:009647i;�0:048113� 0:027778i;

� 0:035710 � 0:042558i;�0:019001� 0:052205i;

0:000000� 0:055556i; 0:019001� 0:052205i; ð94Þ
0:035710� 0:042558i; 0:048113� 0:027778i;

0:054712� 0:009647ig:

For our second example, q2ðtÞ, we use the same set of

points fnjg. For norming constants, we use instead the

numbers, fCjg, determined so that the L2-error,
Fig. 9. Pulse profiles and corresponding transverse magnetization profiles f

bound states. (A) The pulse profiles for q1ðtÞ. (B) The pulse profiles for q2ðtÞ. (
magnetization produced by q2ðtÞ.
Z 1

0

fdðtÞ
����� � i

X9
j¼1

Cje
injt

�����
2

dt; ð95Þ

is minimized. Here fdðtÞ is the inverse Fourier transform
of rdðnÞ, see Eq. (56). To six significant digits, these are

f� 0:004027þ 0:005771i; 0:021100� 0:046418i;

� 0:153690þ 0:089410i; 0:251055þ 0:037842i;

0:000000� 0:198290i;�0:251055þ 0:037842i; ð96Þ
0:153690þ 0:089410i;�0:021096� 0:046418i;

0:004027þ 0:005771ig:

Figs. 9A and B show q1ðtÞ and q2ðtÞ, respectively. The
transverse magnetization profiles they produce are

shown in Figs. 9C and D.

Example 4. We consider 90� pulses with a variety of

different choices for the bound states. We approximate
the magnetization profile using the function r18ðnÞ ¼

1

1þn18
. As before fnj : j ¼ 1; . . . ; 9g denotes the poles of

r18ðnÞ in the upper half plane, see (93). We find the po-

tentials that use the following collections of bound

states:
or pulses with a piecewise polynomial reflection coefficient and some

C) The transverse magnetization produced by q1ðtÞ. (D) The transverse
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Bþ
1 ¼ fn1; n9g; Bþ

2 ¼ fn1; n2; n3; n7; n8; n9g;
Bþ

3 ¼ fn1; n2; n3; n4; n5; n6; n7; n8; n9g; B�
1 ¼ fn5g;

B�
2 ¼ fn3; n4; n5; n6; n7g ð97Þ

The corresponding potentials are labeled fqþ1 ðtÞ; qþ2 ðtÞ;
qþ3 ðtÞ; q�1 ðtÞ; q�2 ðtÞg. We use, for norming constants, the

residues of r18ðnÞ at the corresponding poles. With these

choices, qþ3 ðtÞ is a self refocused pulse, supported in
Fig. 10. Pulse profiles for a collection of pulses with the same reflection coeffic

The greater the number of bound states, the larger the maximum amplitud

(solid). (B) The pulse profiles for q�1 ðtÞ (dotted), q�2 ðtÞ (dashed), and q0ðtÞ (s
ð�1; 0�. The left norming constants in this example are
on the order of 107.

Each potential is computed at 2000 points and re-

quired less than 10 s to find on a 2GHz Pentium Linux

box. Fig. 10A shows the potentials qþ1 ðtÞ; qþ2 ðtÞ, and

qþ3 ðtÞ. Fig. 10B shows the potentials q�1 ðtÞ and q�2 ðtÞ
along with the minimum energy pulse, q0ðtÞ, for the

reflection coefficient r18ðnÞ. The larger the index,

the farther to the left the potential is supported, and the
ient, r18ðnÞ and different choices of bound states and norming constants.

e. (A) The pulse profiles for qþ1 ðtÞ (dotted), qþ2 ðtÞ (dashed), and qþ3 ðtÞ
olid).
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larger the maximum amplitude. The magnetization
profiles produced by these potentials are all close to the

ideal. In Fig. 11A we show the magnetization profile for

the minimum energy pulse q0ðtÞ, and in Fig. 11B, the

magnetization profile for the self refocused pulse qþ3 ðtÞ.
9.3. A wavelet example

For our final example we use a standard wavelet to

define the x-magnetization. Such pulses were earlier

constructed by several investigators using the SLR

method; for a discussion and references see [13]. If wðnÞ
is a wavelet, then we set
Fig. 11. The corresponding magnetization profiles for the two extreme cas

transverse magnetization profile for q0. (B) The transverse magnetization pr
m1ðnÞ ¼ wðnÞ; m2ðnÞ ¼ 0; m3ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

q
: ð98Þ
Example 5 (Mexican hat). The Mexican hat wavelet is
defined by the function

wðnÞ ¼ 4ffiffiffiffiffiffi
3p

p ð1� n2Þe�n2

2 : ð99Þ

Fig. 12A shows the minimum energy IST pulse pro-

ducing the transverse magnetization defined by wðnÞ,
which is shown in Fig. 12B. In this example, the

Marchenko equations were solved using simple itera-

tion. The pulse took less than a minute to compute.
es: the minimum energy pulse and the self refocused pulse. (A) The

ofile for qþ3 .



Fig. 12. A minimum energy pulse producing an excitation specified by the Mexican hat wavelet. (A) Minimum energy pulse. (B) Transverse mag-

netization profile.
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9.4. A refocusing pulse

For our last example we construct a refocusing pulse.

Ideally, an inversion pulse maps the equilibrium mag-

netization ½0; 0; 1� to the vector ½0; 0;�1�, for offset fre-
quencies lying in a specified band. For each offset

frequency, n, such a pulse defines an orientation re-

versing rotation RðnÞ of the transverse plane. The pulse

is a refocusing pulse if and only if this rotation is inde-

pendent of the offset frequency, within the band where

the longitudinal magnetization is inverted. Using the

formulæ in Section (3), it is not difficult to show that an
inversion pulse is refocusing if and only if bðnÞ is real

valued. This in turn implies that the pulse is symmetric.

At the conclusion of such a pulse, the transformation,

in-slice, of the transverse plane is a fixed reflection, e.g.

R0 :

1

0

0

264
375!

�1

0

0

264
375;

R0 :

0

1

0

264
375!

0

1

0

264
375:

ð100Þ
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Example 6. As shown in Section 4, it would require an
infinite amount of energy, to exactly invert the magne-

tization for offset frequencies belonging to a band of

positive length. For this reason we design a pulse which

takes ½0; 0; 1� to ½sin �; 0;� cos ��, for a small, positive �. It
is not difficult to show that, if bðnÞ is real, then, in-slice,
this produces a family of orientation reversing rotations

of the transverse plane of the form r�ðnÞR0, with

r�ðnÞ � Id ¼ Oð�2Þ. Fig. 13A shows a refocusing pulse
designed to produce, in-slice, a 179�-flip of the equilib-

rium magnetization. Figs. 13B–D show the effects of this

pulse on the x, y, and z components of the magnetiza-

tion.
10. Conclusion

By introducing the left Marchenko equation, we ob-

tain a method for finding RF-pulses with a given mag-

netization profile, and an essentially arbitrary choice of

bound states. Using a very efficient implementation of

this algorithm, obtained jointly with Jeremy Magland,

we found several examples of RF-pulses with bound
Fig. 13. A 2 kHz, minimum energy refocusing pulse designed to flip the equilib

solid line, the y-components with a dashed line, and the z-components with a

slice. (A) A minimum energy, selective refocusing pulse. (B) The effect of the p

on the initial vector ½0; 1; 0�. (D) The effect of the pulse in (A) on the initial
states. The main import of this algorithm is that it opens
up the possibility of systematically studying the effects of

bound states on the properties of an RF-pulse. We give

a formula, due to Zakharov and Manakov, for the en-

ergy of an RF-pulse in terms of the magnetization

profile and the locations of the bound states. Using this

formula, and the inverse scattering method we deter-

mine the minimum energy RF-envelope that produces a

given magnetization profile. The minimum energy pro-
file is the one for which there are no L2-bound states.

We obtain an estimate for the growth and decay of an

RF-pulse in terms of the kernel functions appearing in

the Marchenko equations. This estimate should prove

useful in studying the relationships among the phase of

the magnetization profile, the locations of bound states,

and the support properties of the RF-envelope. Finally,

we give an interpretation of the SLR-method, showing
that it is, a special (singular) case of the IST approach.

This analysis shows that the SLR design process trades

direct control of the phase of the magnetization profile

for the ability to specify the duration of a pulse.

Through examples, we showed that the windowed IST

pulse, comparable to an SLR pulse, has phase errors of
rium magnetization through 179�. The x-components are shown with a

dotted line. Note the saturation, in (B, C), which occurs outside of the

ulse in (A) on the initial vector ½1; 0; 0�. (C) The effect of the pulse in (A)

vector ½0; 0; 1�.
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a rather different character. In applications where con-
trol of the phase of the excitation is of paramount im-

portance, the IST should prove to be a superior method.
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Appendix A

A.1. The proof of Theorem 4

Assuming that If ð2tÞ < 1, we need to show that the

Marchenko equation

ktðsÞ þ
Z 1

t

Z 1

t
f �ðsþ yÞf ðy þ xÞdyktðxÞdx

¼ f �ðsþ tÞ; ðA:1Þ

can be solved by the iteration defined in (73), and the

solution satisfies the estimate in (74). The proof is a

simple induction argument. Clearly, for t6 s,
jk0t ðsÞj6Mf ðt þ sÞ6Mf ð2tÞ. Assume that

jkjt ðsÞj6Mf ð2tÞ 1
h

þ I2f ð2tÞ þ . . . I2jf ð2tÞ
i
: ðA:2Þ

It follows from this assumption that:

jkjþ1
t ðsÞj6Mf ðt þ sÞ þMf ð2tÞ 1

h
þ I2f ð2tÞ

þ . . . I2jf ð2tÞ
i
�
Z 1

t

Z 1

t
jf �ðsþ yÞf ðy þ xÞjdy dx:

ðA:3Þ

As s > t, the induction hypothesis (A.2), with j replaced
by jþ 1 follows easily from this estimate. Using a sim-

ilar argument we can show that, for jP 1

kjðsÞ
�� � kj�1ðsÞ

��6Mf ð2tÞIf ð2tÞ2j: ðA:4Þ
t t
If If ð2tÞ < 1, then this estimate shows that fkjt g is a
uniformly convergent sequence for s 2 ½t;1Þ. The limit,

k1t , is evidently a solution to (A.1). We can also pass to

the limit in (A.2) to conclude that k1t satisfies (74).

A.2. Proof of Lemma 1

We use the Cauchy–Schwarz inequality to obtain

kFthk2L2ð½t;1ÞÞ ¼
Z 1

t

Z 1

t
f ðs

���� þ yÞhðyÞdy
����2ds

6

Z 1

t

Z 1

t
jf ðs

�
þ yÞjdy

�
Z 1

t
jf ðsþ yÞjjhðyÞj2dy

�
ds

6 If ð2tÞ
Z 1

t

Z 1

t
jf ðsþ yÞjjhðyÞj2dsdy6 I2f ð2tÞ

�
Z 1

t
jhðyÞj2dy: ðA:5Þ

In the third and fourth lines we use the fact that If ðtÞ is a
monotone decreasing function.
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